Analytische Chemie	Küchenchemie/ Lebensmittel	Chemie im Alltag	Klinische Chemie
1. Spektroskopie	5. Sauce Eindicken	15. Superabsorber	22. Blutfette
2. CSB	6. Karotten	16. Flüssigkristall	23. Dialyse
3. Titration	7. Apfel + Zitrone	17. Kunststoffbälle	
4. Chromatographie	8. Johannisbrotkernmehl	18. Kalkseifen	
	9. Spinat	19. Deo	
	10. Underlying principle	20. Isolation der DNA	
	11. Eier färben	21. Handwärmer	
	12. Emulgatoren		
	13. Milch als Emulsion		
	14. Fettsäuren		

Versuche der Analytischen Chemie

1. Spektroskopie

Was ist Spektroskopie – am Beispiel Flammenfärbung und Tetramminkomplex Cu (den wir mit Dithizon oder anderem Komplexbildner mit hohem epsilon vergleichen) – dazu Brenner s.o. Lösungen Cu und Komplexand und Ammoniak, dann Anwendungsbeispiel mit einem Merck Spektroquant Test zB für Sulfit in Getränken oä (vorhanden oder über Unger-Heumann zu haben). Prisma und Gitter als Modelle, Abb. aus Fres. Zeitschrift von der ersten Publikation Bunsen Kirchhoff

2. CSB

Knoblauch bzw. Wein mit Permanganat als Modell für CSB

3. Titration

Titration von Haushaltsessig mit Natriumcarbonat – Indikator Phenolphthalein (Modell: Schrauben und Muttern)

4. Chromatographie

Ein einfaches Modell für Chromatographie, wie Kreide bzw. DC-Platte bzw. Papier plus Farbstoffe aus einem Alltagsgegenstand, zB Faserstift oder Gemüse

Versuche für Küchenchemie und Lebensmittel

5. Sauce Eindicken

Eindicken einer Sauce mit Stärke – warum gibt man dann keine Säure mehr zu und kocht auf?

Stärke, Wasser, Zitronensaft

6. Karotten Kochen

Noch aus der Küche: warum sollte man Karotten mit Fett andünsten und nicht nur in Wasser kochen?

Karotten, Wasser, Fett (z.B. helles Distelöl)

7. Apfel und Zitrone

Apfel und Zitronensaft – warum wird er nicht mehr braun?

Apfel, Zitronensaft Theorie s. Schulversuche mit Lebensmitteln S. 55

8. Johannisbrotkernmehl: Eindicken mit Johannisbrotkernmehl – Deutung

CITIES – Chemistry and Industry for Teachers in European Schools, A COMENIUS 2.1. Project ,129193-CP-1-2006-1-DE-COMENIUS-C21

9. Spinat

Spinat – warum kocht man ihn nicht mit Säure, und warum kochte Apicius ihn im Kupfertopf?

Spinat, Kupferlösung, Säure, Bunsenbrenner

10. Underlying principle

Brause, Schorle, Backpulver, Bullrich-Salz: Chemiker/innen sehen das "underlying principle" Theorie s. Schulversuche mit Lebensmitteln S. 105

- 11. Eier färben mit Quercetin
- 12. Emulgatoren in Fertigprodukten
- 13. Milch als Emulsion
- 14. gesättigte und ungesättigte Fettsäuren, der Unterschied

Versuche für Chemie im Alltag

15. Superabsorber

Wirkung eines Superabsorbers – Wasserbindung (erforderlich: Bestellung von 1 kg Hysorb bei BASF bzw. ähnliches Material bei Procter und Gamble

16. Flüssigkristall

Verhalten eines thermotropen Flüssigkristall (Proben von der Fa. Merck sind da) – dazu braucht man Eis zur Kühlung oder kaltes Wasser, und ggf. heißes Wasser

17. Kunststoffbälle

Verhalten von Kunststoffbällen aus Gummi – vernetzt und unvernetzt – im Vergleich zu Silly Putty (US-Spielzeug) – Deutung elastischen Verhaltens – Proben sind da

18. Kalkseifen

Bildung von Kalkseifen aus Ca und einer guten Seife, Modell dazu für den unlöslichen Komplex

- 19. Aluminium im Deo
- 20. Isolation der DNA aus der Tomate
- 21. Handwärmer

Versuche für Klinische Chemie

22. Blutfette

Nachweis von Blutfetten mit einem Kit der Fa. Diasys (Kit von Dr. Metzmann, Milch jeweils frisch, Verdünnung Milch ausprobieren), Rotfärbung nach 1-2 min

23. Dialyse

Modelle einer Dialysemembran – exotische Gurke, Kügelchenmodell, Fasern, Dialysator – vorhanden

Versuchsbeschreibungen

1. Spektroskopie (Flammenfärbung)

Materialien:

- Magnesiastäbchen
- Gasbrenner
- Strontium
- Barium
- Lithium
- Natrium
- HCI

Durchführung:

- Magnesiastäbchen in HCl halten/befeuchten und dann mit dem zu untersuchenden Salz benetzen und in die nicht leuchtende Flamme des Brenners halten

Beobachtung:

- Flammenfärbung, Farbe abhängig vom Salz
- Strontium = kräftig rot
- Barium = grün
- Lithium = rosa/rot
- Natrium = lang anhaltend orange

2. CSB

Materialien:

- Permanganatlösung
- Weißwein
- Knoblauch
- Filterpapier
- Knoblauchpresse

Durchführung:

 frischen Knoblauch mit einer Knoblauchpresse zerkleinern und in Wasser geben, für kurze Zeit im Wasser einwirken lassen und dann filtrieren Kaliumpermanganatlösung in zwei verschiedene Reagenzgläser geben; in eines der Reagenzgläser das Knoblauchfiltrat geben und in das zweite den Weißwein geben

Beobachtung:

- die Kaliumpermanganatlösung wird entfärbt

3. Titration

Materialien:

- Essig
- Natriumcarbonat
- Phenolphthalein
- Pipette

Durchführung:

- Essigsäure und Phenolphthalein in ein Reagenzglas geben, dann tropfenweise eine Natriumcarbonatlösung zugeben, bis zur ersten bleibenden violetten Färbung

CITIES – Chemistry and Industry for Teachers in European Schools, A COMENIUS 2.1. Project ,129193-CP-1-2006-1-DE-COMENIUS-C21

4. Chromatographie (Zwei Versuche)

1. Versuch

Materialien:

- frische saftiggrüne Grashalme oder grüne Blätter
- Kreidestücke
- kleine Glasschale
- Brennspiritus (Drogeriemarkt) oder Alkohol (aus der Apotheke)

Durchführung:

- Grashalme bzw. die Blätter zerschneiden (effektiver funktioniert das mit einem Mörser)
- soviel Brennspiritus zugeben, sodass die Blätter bedeckt sind (in ein heißes Wasserbad stellen, dann lösen sich die Farbstoffe schneller heraus = Extraktion)
- die dunkelgrüne Lösung in eine Schale gießen und senkrecht ein Stück Kreide reinstellen und die Lösung etwa einen cm hoch steigen lassen
- dann stellt man diese Stück Kreide in eine Schale mit Brennspiritus

Beobachtung:

- eine grüne und darüber ein gelbe Farbzone sind zu erkennen

Erklärung:

- die im Blatt enthaltenen Farbstoffe wurden durch den Spiritus aus dem Blättern herausgelöst
- die Auftrennung in die unterschiedlichen Farben zeigt, dass die Blätter keinen einheitlichen Farbstoff enthalten sondern ein Farbstoffgemisch
- die grüne Farbzone sind die Chlorophylle
- die gelbe Farbzone bilden die Carotine und Xanthophylle

2.Versuch

Materialien:

- Rundfilter
- Filzstifte (wasserlöslich)
- Wasser
- niedrigen Becher, Schale

Durchführung:

- in die Mitte des Rundfilters ein runde Loch schneiden von ca 5mm
- um das Loch herum (in etwa im Abstand von 1 cm) mit einem Filzstift einen Kreis ziehen
- einen weiteren Rundfilter aufrollen und durch das Loch im Rundfilter stecken
- den Becher mit Wasser füllen und den Rundfilter auf dem Becherrand ablegen, sodass das Filterpapierröllchen das Wasser berührt (der Rundfilter darf das Wasser nicht berühren)

Beobachtung:

- das Wasser breitet sich nach allen Seiten gleichmäßig aus
- die im Filzstift enthaltenen Farben werden getrennt

Quelle: Experimentieranleitung Kosmos Chemie

5. Sauce eindicken

Materialien:

- Wasser
- Johannisbrotkernmehl
- Essig oder Zitronensaft

Durchführung:

- Wasser mit Johannisbrotkernmehl eindicken
- ggf. erhitzen
- zusätzlich kann nach dem Eindicken Säure dazugegeben werden (Essig, Zitronensaft)

6. Karotten

Materialien:

- Karotten
- Speiseöl
- 2 Bechergläser

Durchführung:

- Karotte in kleine Streifen schneiden
- Einen Teil der Karottenstreifen in Wasser erhitzen den zweiten Teil in Öl

Wie sieht die Farbe des Öls und des Wassers nach dem Erhitzen aus??

7. Apfel und Zitrone

Materialien:

- Apfel
- Zitronensaft

Durchführung:

- den Apfel auf die Hälfte schneiden
- auf eine Hälfte des Apfels Zitronensaft geben und die andere Hälfte unbehandelt lassen
- beide Apfelstücke für eine Weile an der Luft liegen lassen

Beobachtung:

- bei der mit Zitronensaft behandelte Apfelhälfte ist kaum eine braun Färbung zu erkennen
- die unbehandelte Hälfte hat sich braun gefärbt

8. Johannisbrotkernmehl

Siehe Versuch 5 (Eindicken einer Sauce)

9. Spinat

Materialien:

- Spinat
- Essig
- verdünnte CuCl₂-Lösung, Wasser, 3 Bechergläser

Durchführung:

- Spinat mit einem Mixer oder Mörser zerkleinern, sodass ein Brei entsteht
- In einem Becherglas Spinat mit Wasser erhitzen
- In ein Becherglas Wasser und Essig geben und erhitzen
- Im dritten Becherglas Spinat mit der verdünnten CuCl₂-Lösung erhitzen
- Vergleiche die Farben des Spinats

10.Underlying Principle

Materialien:

- Brausepulver
- Backpulver
- Sprudelwasser
- Saft
- Reagenzgläser

Durchführung

- zu dem Sprudelwasser Saft geben
- in das Sprudelwasser Brauspulver geben
- Backpulver in das Sprudelwasser geben

Beobachtung:

- es sprudelt

Bullrich Salze gegen überschüssige Magensäure

Materialien:

- Bullrich-Salz Tabletten (Bullrich Salz = ein Natriumhydrogencarbonat)
- Essigsäure
- Indikator: Methylgelb (Der Farbumschlag von rot nach gelb erfolgt im pH-Bereich von 2,9–4,0)
- Essigsäure mit Indikator versetzen
- Bullrich Salz oder Tablette hinzufügen
- Farbe verändert sich; Lösung wird alkalisch
- es sprudelt

Quelle: Georg Schwedt: Experimente mit Supermarktprodukten

11. Eierfärben mit Zwiebeln S.81

Materialien:

- Quercetin
- Wasser
- Eierschale eines weißen Eis

Durchführung

- Quercetin in Wasser geben
- in dieser gelb gefärbten Lösung eine Eierschale oder ein Stück der Schale eines weißen Eies kochen

Beobachtung:

- Schale färbt sich gelb bis braun, je nach Kochzeit

Quelle: Georg Schwedt: Chemie für alle Jahreszeiten

12.Emulgatoren in Kartoffel-Fertigprodukten

Materialien:

- Kartoffel-Püree-Pulver (Zutaten: Emulgator Mono- und Diglyceride von Speisefettsäuren, Stabilisatoren (Natriumcitrat, Natriummetbisulfit), Aroma, Antioxidationsmittel Ascorbylpalmitat)
- Speiseöl
- Paprika-Pulver scharf

Durchführung

- Paprikapulver mit wenig Speiseöl unter heißem Wasser (aus der Leitung) erwärmen
- die rot gefärbte Lösung in ein zweites Rgl gießen, ohne das restliche Paprikapulver und zu zwei Dritteln des Volumens Wasser zugeben
- schütteln, die gefärbte Ölschicht setzt sich auf dem Wasser ab
- Zwei bis drei Spatellöffel Kartoffelpüree-Pulver zugeben, erneut kräftig schütteln
- eine Verteilung des roten Paprikafarbstoffes ist festzustellen

Erklärung:

- der rote Paprikafarbstoff löst sich nur im Öl, das sich auf dem Wasser absetzt
- Nach Zugabe des Kartoffelüree-Pulvers bewirken die Emulgatoren eine Verteilung von Fett in der wässrigen Phase
- Die Roten Paprikafarbstoffe zeigen die Verteilung des Fettes in der Lösung

Quelle: Georg Schwedt: Experimente mit Supermarktprodukten

13. Milch als Beispiel für eine Emulsion

Materialien

- Methylenblau, Sudanrot, Frischmilch

Durchführung

- zwei Rgl mit etwas Milch füllen
- beiden Rgls eine Spatelspitze Methylenblau bzw. Sudanrot zugeben

Beobachtung:

- Methylenblau (wasserlöslich) führt zu einer intensiven Blaufärbung
- Sudanrot (fettlöslich) nur zu einer schwachen Rotfärbung

Erklärung:

- die unterschiedlichen Intensitäten der Färbungen sind auf unterschiedliche Gehalte an Fett und Wasser in der Milch zurückzuführen
- Milch enthält etwa 96% Wasser und 4% Fett

14. gesättigte und ungesättigte Fettsäuren, der Unterschied

Materialien:

- Distelöl, Palmin, Iodlsg., Essig
- Stärkeauflösung in Wasser aus Weizenstärke

Durchführung:

- Distelöl und Palmin mit Essig, etwas Wasser und einigen Tropfen Iodlsg. versetzen
- Gemisch schütteln
- einige Tropfen Stärkeauflösung zugeben

CITIES – Chemistry and Industry for Teachers in European Schools, A COMENIUS 2.1. Project ,129193-CP-1-2006-1-DE-COMENIUS-C21

Beobachtung:

- Die Lösung, in der Palminfett enthalten ist färbt sich blau

Erklärung:

- Distelöl besteht aus ungesättigten Fettsäuren, diese reagieren mit dem Iod (Additionsreaktion)
- Palminfett besteht aus gesättigten Fettsäuren, es kommt zu keiner Reaktion
- das Iod bildet hier mit der Stärke den blau gefärbten Iod-Stärke-Komplex

Quelle: Georg Schwedt: Experimente mit Supermarktprodukten

15.Superabsorber

Materialien:

- Hysorb von BASF
- Wasser

Durchführung

Hysorb in Wasser geben

Beobachtung

- das Wasser wird fest
- das Gefäß lässt sich sogar auf den Kopf stellen ohne dass Wasser herausläuft

16.Flüssigkristall

Materialien:

- Flüssigkristall
- Fis
- Kaltes Wasser
- Heißes Wasser

Durchführung:

- Flüssigkristall bei versch. Temperaturen beobachten

17.Kunststoffbälle

/

18. Kalkseifen

Materialien:

- Seife
- Calciumsalz
- Filterpapier

Durchführung:

- mit einem Messer Seife abschaben und in Wasser geben
- die Seife für eine Weile im Wasser einwirken lassen und die Lösung dann filtrieren
- das Calciumsalz in Wasser lösen
- zur Calciumlösung die filtrierte Seifenlösung geben

Beobachtung:

- weiße Kalkseifen flocken aus

19. Aluminium im Deo

Materialien:

- Natrium-Alizarinsulfonat Lösung (0,1 g Natrium-Alizarinsulfonat in 100 ml dest. Wasser, lange haltbar)
- Deo mit Aluminium-Chlorohydrate
- Ammoniak

Durchführung:

- dem Deo eine Probe entnehmen und diese in ein Reagenzglas geben
- 1:20 mit dest. Wasser verdünnen
- Lösung mit Ammoniak oder Natronlauge alkalisch stellen
- Lösung mit einigen Tropfen der Reagenzlösung versetzt und vermischt.

Ergebnis:

Die Bildung eines rotvioletten Niederschlags oder eine Rotviolettfärbung zeigen Aluminium an.

Alternativ:der DeoProbe einen Indikator zugeben, der sich im Sauren verfärbt

Fällen von Eiweiß durch Aluminiumsalze

Materialien:

- Hühnerei-Eiweiß
- 0,9%ige NaCl-Lösung
- Aluminiumchlorid-Hexahydrat oder Alaun-Lösung

Durchführung:

etwas Hühnerei-Eiweiß in 0,9%iger Natriumchloridlösung lösen

eine Lösung von Aluminiumchlorid-Hexahydrat oder von Alaun dazu tropfen

Ergebnis:

Das Eiweiß flockt aus

Quelle: http://chemieunterricht.de:80/dc2/tip/08_06.htm

20.DNA aus der Tomate

Materialien:

- Frucht (Obst oder Gemüse) (Tomaten, Kiwi)
- Mixer oder Mörser
- Geschirrspülmittel
- Kochsalz

- Wasser
- Filter
- Isopropanol

Durchführung:

- 5mL Spülmittel, 2g (1TL) Kochsalz und 45 mL Wasser gut vermischen, bis sich das Salz löst
- Obst und Gemüse zerkleinern, und dann in den Mixer/Mörser geben
- Spülmittel-Salz-Wasser-Lösung hinzufügen und die Obst/Gemüse Zellen ca. 5
 Sekunden aufbrechen (nicht zu lange mixen/zerreiben, sonst zerstört man die DNA)
- Lösung filtrieren
- das Filtrat mit dem gleichen Volumen an Isopropanol versetzen und vorsichtig mischen
- die DNA wird als wolkenartiges Knäuel sichtbar

Quelle: http://www.dialog-gentechnik.at/binaries/108927.pdf

21.Handwärmer

/

22.Blutfette

Materialien:

- ein wenig frische Milch
- Kit der Firma Diasys
 - o Reagenz (Triglycerides FS / REF 1 5710 99 10 026), in 100 mL Flaschen
 - o eventuell Standard (Triglycerides Standard FS), 3 mL Fläschchen

Durchführung:

- Milch etwas verdünnen und mit der Reagenzlösung etwa 1:2 mischen
- nach 2 Minuten ist eine erste Rotfärbung zu erkennen, die mit der Zeit intensiver wird
- gibt man Reagenzlösung zu den Triglyceriden-Standards ist eine noch intensivere Rotfärbung zu beobachten

23.Dialyse

/